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SUMMARY

The optimal exploitation of a population is considered for three stochastic population models; these allow
both demographic and environmental variability and the possibility of extinction. The dynamics are
linear in the harvest rate; the optimal policy then recommends harvesting at the maximal rate above a
critical level (the ‘threshold’) and at zero rate below. However, in all cases the optimal threshold differs
radically according as to whether one maximizes the total return before extinction or the rate of return
per unit time over the period before extinction. In the former case the optimal threshold is at the
deterministic equilibrium level of the unexploited population, in the latter case it is approximately at the
level of maximal sustainable production. Part of the explanation is that maximization of total yield turns
out to be almost equivalent to maximization of time to extinction. Both average yield rate and the
expected time to extinction vary with the policy, but the second much more powerfully. Both the criteria
above are extreme: one obtains a balanced criterion (and an intermediate threshold) if one maximizes
rate of return (before extinction) subject to the conservation requirement of a lower bound on the
expected time to extinction. In the case when extinction is excluded because of a potential ‘rescue effect’
one comes to the same view by taking account of the relative time needed to restart an obliterated
population. The practical implication is that more attention should be paid to extinction and restart
times. For vulnerable populations it is likely that maximal utilization before an inevitable extinction will
be achieved at low harvest rates. For large populations or metapopulations, with large times to extinction
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or quick recovery from a temporary extinction, classical resource models are appropriate.

1. INTRODUCTION

Extinctions, their description and our models for them,
reflecting current understanding of these major events,
are of public and scientific interest (Chaloner &
Hallam 1989; Anon. 1992). Extinctions are well
documented over geological time, for example, the
dinosaurs, and by recent impacts of Man, for example,
the passenger pigeon ([Ectopistes migratorius) and Steller’s
sea cow (Hydrodamalis gigas). Although presented with
understandable caveats, Smith et al. (1993) suggest
that half the world’s species of fish, amphibians, birds,
mammals and palm trees may be lost within 1000
years. Knowledge of a species’ vulnerability to ex-
tinction and capacity for survival are important in
understanding the colonization of islands (MacArthur
& Wilson 1967). The processes are similar to those
associated with the introduction of exotic forms and
translocations (Elton 1972), for which scientific support
of policy is required. Mathematical models have been
developed to explain and predict the dynamics of
populations which are subject to stochastic variability
and which may be driven to extinction by chance
events. The models tend to be of a discrete nature or
approximated by diffusion equations; the work is
summarized by, for example, Cox & Miller (1965) and
Goel & Richter-Dyn (1974), building upon the
fundamental studies of Kendall, Feller & Kolmogorov.
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By these means models have been constructed of
colonization (Lande 1987; Williamson 1989) and gene
flows (Kimura 1964). The diffusion model also leads
(at least in the case of a scalar-state variable) to a ready
expression for the steady-state probability distribution
of population and harvest; this was applied to marine
fisheries by May et al. (1978).

The initial models for exploitation of fisheries were
deterministic and relatively simple (Graham 1935).
Beverton & Holt (1957) used age-structured models;
their ‘yield-per-recruit’ concept has been a basis for
fisheries management worldwide. The approach
averages out the effect of variable production of young
fish (termed ‘recruitment’), although Beverton & Holt
(1957) and Chapman (1961) developed stochastic
models for the case of constant average recruitments.
The production of young fish is very variable and
apparently random (Cushing 1975) and cannot be
neglected in fisheries management. The diffusion
formulation allowed May et al. (1978) to use complex
stock-recruitment (density-development) relations and
to introduce the possibility of yield /variance trade-offs.
Horwood (1983) used a localized linear-systems theory
to develop expressions for variance of population and
yield. The models above led to the development of
useful principles, based upon a maximization of some
suitable quantity such as yield, profit or stability.

Models followed which allowed a stronger form of
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a(x)
/

Figure 1. The general production function (a(x)) against
population size (x), with the points of maximum net
productivity (x,) and unexploited equilibrium (x,); note the
general non-zero production at zero population size.

optimization, taking account of transient events. The
deterministic models were developed and reviewed by
Clark (1976, 1985). Some special cases of stochastic
optimal harvesting were formalized (Reed 1984, 1988;
Mangel 1985) and local solutions to the more general
nonlinear stochastic harvesting and control problem
were derived by Horwood & Whittle (19864, b). Risk-
sensitive versions and large-deviation treatments have
also been developed (Horwood 1995). A feature of the
stochastic models mentioned is that they recommend
an operating point consistent with that which is
optimal for a deterministic model. Many authors have
emphasized the necessity to allow for uncertainty in
resource management, although with differing
opinions of the effectiveness of such management; see
for example Ludwig ¢t al. (1993) and Rosenberg et al.
(1993).

The simplest deterministic models are expressed in
terms of the net reproduction rate a(x) (in terms of
biomass) for a population of size (biomass) x. The
function a(x) is assumed to have the general character
illustrated in figure 1. Significant quantities are the
level x,, at which the net rate of production of biomass
is maximal and the level x, at which the population
would stabilize in the presence of exploitation.

The impetus for this study comes from the results
and conclusions derived by Lande et al. (1994, 1995) on
the optimal harvesting of populations which have a risk
of extinction. They worked with the simple logistic
population model which has been extensively used in
resource management, and which has served as the
basis for important recommendations on management
strategy (Schaefer 1954; Clark 1976; Horwood &
Whittle 19864). For these simple models the optimal
policy has an extreme threshold character: harvesting
is carried out at the maximal rate when the population
exceeds a critical value (the ‘threshold’) and at zero
rate below it. The population will then stabilize at this
threshold value. Previous studies have shown that the
threshold value which maximizes rate of return is just
x, : the level of maximal net productivity (the maximal
sustainable yield or maximal economic yield). If one
rather optimizes discounted future return then the
threshold falls as the discount rate is increased;
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ultimately to the value at which the marginal rate of
return is zero (or profit is zero, for models linear in
harvest rate). The finding by Lande et al. was that, if
extinction is possible, then the population should be
harvested only when it is above its natural, unharvested
equilibrium level x,. They admit the remarkable nature
of this result.

It is a disconcerting result. It is unsettling math-
ematically because the optimal threshold seems to
jump discontinuously from the deterministic recom-
mendation x, to the stochastic recommendation x,,
however small the degree of stochasticity. It is even
more unsettling to those advising on resource man-
agement. The classic deterministic models provide a
rationale for the operation of fisheries, whaling,
hunting and forestry at the maximal sustainable
economic level. The stochastic models which do not
envisage extinction imply only slight and under-
standable deviation from this policy. The results of
Lande et al. suggest that such advice and management
over half a century may have been in error. The fate of
populations is extinction, and the deterministic and
stochastic models developed for resource management
have neglected this aspect.

This paper confirms the fact of the conflicting
recommendations for a range of stochastic models, but
explains the conflict. It also explains how a proper
balance of short- and long-term considerations leads to
an intermediate threshold, which reassuringly con-
verges to the classic recommendation x,, as the model
tends towards determinism. The existence of a physical
scale parameter k which quantifies the closeness of the
model to determinism is important in this context.

The paper confirms the apparently conflicting
conclusions for three distinct stochastic models: a
birth/death model, a diffusion model and a model
whose only stochastic element is a random switching
between different environmental regimes. The second
is an elaboration of the Lande et al. analysis. The third
differs from the other two in that stochasticity is totally
environmental rather than demographic. It does
indeed show some difference in conclusions, but the
optimality of the two conflicting policies under ex-
tinction or non-extinction is again confirmed.

However, in §§5 and 6 we see that, whether extinction
is possible or not, the emergence of the two extreme
recommendations can in fact be explained. If ex-
tinction is possible then one recommendation or the
other is optimal according as the criterion is the
maximization of the total expected harvest before
extinction or of the average expected harvest (i.e. the
yield rate) over the time before extinction. The first
criterion in particular is extreme because it turns out
that maximization of total expected harvest is almost
equivalent to maximization of the expected time to
extinction, 7T_,. The value of the yield rate plays
almost no role. A balanced criterion would be one
which maximized yield rate subject to the conservation
condition that 7, should not be smaller than a
prescribed value 7, . However, 7., increases very
rapidly as the stochastic element is weakened: the
optimal threshold then drops rapidly to the classical
recommendation x,,,.


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

Extinction and optimal management

If extinction is impossible then an obliterated
population must be able to restart by some mechanism;
let 7., denote in this case the expected time taken to
extinguish the population and 7. the expected time
needed to restart it. Then the ratio 7.,/ T, is crucial,
and the optimal threshold lies near x,, or x, according
as this ratio is large or small.

2. THE DETERMINISTIC MODEL

The simplest deterministic model has a single scalar
variable x, the ‘biomass’ or stock level, which follows
the equation

% =a(x)—u. (1)

Here u is the harvesting rate, which (it is supposed)
may be varied as desired. The rate of return is also
supposed proportional to #, and normalized to be equal
to it. (The model thus neglects two very important
elements: the age structure of the stock and the x-
dependence of the cost of harvesting at rate u.)

We suppose that the function a(x), the net re-
production rate of the unharvested population, has the
concave form illustrated in figure 1. This is the simplest
realistic form, but our discussion is easily extended to
cover variations from it, such as the presence of an
Allee effect. Let x,, and x, denote the levels at which
a(x) is respectively maximal and zero. An unharvested
population would thus reach an equilibrium at x = x,.

It is a relatively direct consequence of the dynamic
programming equation for this model that the optimal
policy has the threshold form: u is zero for x < ¢ and
takes its maximal value (#, say) for x > ¢. Here ¢ is the
threshold, and one seeks now to determine its optimal
value. If a(x) > 0 for x < ¢ and a(x) =/~ <0 for x > ¢
then the harvested population has the equilibrium
value ¢ and yields a return at rate ¥ = a(¢). If we do not
discount, and so choose a threshold value which
maximizes this average return Y, then the optimal
threshold is the value x,, which maximizes a(c); (Clark
1976).

A threshold policy will still be optimal for a stochastic
model under reasonable assumptions on transition
rates. However, there is the effect observed in the
introduction: that the optimal threshold seems to lie
near x, or x, according as to whether extinction of the
population is possible or impossible. This is the effect
observed by Lande et al. (1994) for a diffusion model,
and which we shall now verify for a discrete stochastic
model. The explanation and reconciliation will emerge
in §6. In §§7 and 8 we shall indicate how these
conclusions carry over to the diffusion model and,
more interestingly, to a model in which the stochastic
variation is environmental rather than demographic.
The conclusions extend also to the case of discounted
returns, as indicated in §6.

3. ABIRTH/DEATH MODEL WITHOUT
EXTINCTION

The first stochastic model we take is a birth/death
process. Suppose, for definiteness, that the population
being harvested is one of fish; let j be the actual
number of fish. We shall set x = j/k where « is a scaling
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parameter, presumed large, reflecting the fact that quite
usual levels of stock x correspond to large values of ;.
(We are forced to assume biomass proportional to
population size, since we have not allowed for an age
structure.) We shall suppose that s follows a continuous-
time Markov process on the non-negative integers with
possible transitions j—j41 and j—j—1 at respective
probability intensities A; and u;. These intensities thus
correspond to population birth and death rates. The
net reproduction rate A;—pu,; could be written «;, and
corresponds to ka(x). The scaling parameter « is
important; the model approaches determinism as &
increases.

Necessarily p, = 0, but we shall suppose initially
that A, > 0. That is, that a zero population is
replenished (by a trickle of immigration, say), so that
extinction is impossible.

Let m; denote the equilibrium distribution of
population size; the probability that the population
has size j in the steady state. Then the relation
m;A; = T,y (expressing the balance of probability
flux between states j and j+ 1 in equilibrium) implies
that 7r; oC p;, where

(A A S
P ) (=0). (2)
(The value of p, is in fact 1, and we shall take this as
being the convention in such cases: that a product has
value 1 when the set of labels over which it ranges is
empty, see for example expression (9).)

A threshold ¢ for the x-process implies a threshold

& k¢ for the j-process, in that d can be taken as the
integer nearest to kc. For simplicity we shall suppose
that the harvesting rate 4 is infinite, although the case
of a finite rate can be treated almost as easily. Any
excess of population over d is then immediately
removed and one effectively has A; = 0 and p;, = 0 for
j>d. The population is then confined to the range
0 <j < d and the average return (i.c. expected rate of
return on the original »-scale in the steady state) is then

a
Y=x"m2q = pada/ k2 p; (3)
0

the term 7, A, representing the expected rate at which
excess over ¢ is produced and immediately cropped as
harvest.

Suppose now that the ratio 6, = u,/A, ; is effectively
constant (and less than unity) for j in the neigh-
bourhood of d. The effect of this is that p, ; ~ p, 0}
(j < d), so the probability that the population is an
amount j below threshold falls away exponentially fast
with increasing j. Formula (3) then becomes

Y~ kA (1=0,) = 71 (Ag— prg) = a(c). (4)

This is just the return rate for the deterministic model,
maximized when the threshold ¢ is chosen as the level
x,, at which the net reproduction rate is maximal.

This argument can be made precise if we pay
attention to the scaling. The nature of the scaling leads
one to suppose that the birth and death rates are of the
forms

A, = kAG/R), py = kuifK) (5)
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in terms of functions A(x) and u(x), corresponding to
the deterministic equation X% = A(x) —pu(x) = a(x) in
the limit of large «. If A(x) and u(x) are continuous
then A;/p; will vary slowly with j if « is large, with the
consequence that the equilibrium distribution of x falls
away virtually exponentially as x decreases from
¢ =d/k. The probability mass will indeed be con-
centrated in the region just at and below threshold if «
is large, at least if A; > 0, because of the assumption
implicit in the graph of figure 1, that a(x) >0 for
0 < x < x,. This implies that u,/A; is less than unity for
J < kx, which implies a rapid tailing-off of the distri-
bution as x falls from the threshold value.

Explicitly, it follows from (2) and the hypothesis (5)
that we can write

pj — CKR(ZH—O(K)’ (6)

for large «, where x = j/k and

Rm=ﬁmmmmmw. )

As R(x) is increasing for x» < x, then it would appear
from (6) that the distribution is concentrated where x
is largest: at and near threshold. However, we need to
refine expression (6) if we are to capture possible
anomalies for small x. An appeal to the Euler-
MacLaurin formula for numerical integration (see for
example Margenau & Murphy (1943) p. 457) gives the
refinement of (6)

Pi/Pa = vV [A(e)p(c) /A (x)pu(x)] eHR@)=R(©)]+o(1)

if the function log [A(x)/u(x)] has a continuous first
derivative. Inserting this into expression (3) we find
that, for large «, the dominant contribution to the sum
in the denominator is from j near d and we confirm the
evaluation

Y~ Ae) [1=e 9T = Ae) [L—p(e)/A(6)] = alc)

consistent with (4).

This calculation fails if A(x) behaves in such a way
for small x that extinction is possible. This is the case we
consider in the next section.

4. A BIRTH/DEATH MODEL WITH
EXTINCTION

Suppose now that A, =0, so that extinction is
possible (and indeed certain in a finite time if « is finite
and if, as we shall suppose, passage to j = 0 is possible
from all states and the population is harvested above
some finite threshold). Equation (2) then yields simply
a distribution concentrated on j = 0.

Let £ be the expected total return before extinction
conditional on an initial population of j. (It is
understood that the policy is that of harvesting at an
infinite rate above the prescribed threshold value d.)
The dynamic programming equation is then

N B =) +p(E,—F) =0, (0<j<d) (8)
with the effective boundary conditions F; =0 and
(Fypy—F;) = 1. This last relation follows because any

excess over threshold is immediately removed and
converted into yield.

Phil. Trans. R. Soc. Lond. B (1995)

Theorem 1. Assume that passage to O is possible from all
states and that the threshold d is finite. Then the relevant
solution of (8) for is

J
B=1,] S (i )/ M A2 |
k=1

O0<j<d). (9)
where

Iy = (A Ay Ag) [ (g fh - 1) (10)
Proof. We can write (8) as A;A;,; = u; A; where A, =
FE—F_,. Using this equation to determine A, in terms
of Ay;; =1 and then summing to determine F, we
obtain the solution (9). 1

Now, the d-dependence of the F; occurs only through
the common factor I1,, and the optimal threshold will
maximize this. The maximizing value will be that at
which A,;/u, decreases from a value above unity to one
below, so that a, = A;—p, decreases through zero.
That is, the optimal value of ¢ is x,, the deterministic
equilibrium level of the unharvested population. (The
deterministic model has equilibria both at x = 0 and
x = x,, but only the second of these is stable, under our
assumptions.) More exactly, it is less than x, by amount
not exceeding .

The two cases thus lead to radically different
recommendations, as was observed by Lande et al.
(1994) for the diffusion model. In the next two sections
we explain exactly why this is so and to what
alternative view one is led.

5. BEHAVIOUR FOR NEAR-DETERMINISTIC
MODELS

To explain the apparent stark contradiction between
the two recommended policies we need to obtain a
feeling for orders of magnitude of the various quantities
occurring as k becomes large, and so the process
approaches determinism.

Consider then the birth/death model with extinction
of §4. Because most of the time before extinction will be
spent near the threshold value if « is large (an assertion
which we shall shortly justify) we shall consider only F,,
the expected yield before extinction conditional on an
initial value d of ;.

Let T, denote the expected time before extinction
which is spent in state j (conditional on a start from d).
Then, by the same methods which led to the evaluation
(9), we find that

7
Hafly o Mg || Bje1 Bz -+ Ma
=1 [E ][ e } 11

g it A A Ay Ay (1)

which is consistent with expression (9) for £, = A, 7.

When we see the process in terms of the scaled
variable x = j/k we shall write Fj = kF(x) and T, =
T(x). We then deduce from expression (9) that

F(C) — eKR(C)+O(K) (12)

for large k, where R(x) is the function defined in (7).
We thus see that F(¢) grows exponentially fast with «.
Indeed, we see from (11) that the same holds true for
the occupation times:

T(x) — eKR(xHo(K) (13)
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for any fixed x. Relations (12) and (13) can be refined,
but the only more exact relation which we shall need is

M~

(Bapho oo 1)/ (A Ay ... /\Ic—l)]

R Spi/ A, (14)

= o/

k

1

where

M =

S =

(yfhg oo 1) ] (A Ag oo Ay y). (15)

k

I

1

In the next section we shall interpret S/A, as the
expected time taken for a population which has been
extinguished to be reseeded and to grow to viability.
The sum in (14) will differ from § by a term of order
at most 67(1 —6)™!, where € is an upper bound on the
ratio x,/A; in the range 0 <j <d. The value of j at
which this term becomes negligible marks the level at
which the population has attained viability.

The scaling argument will again imply that 6, =
#;/ A, varies only slowly if « is large, with the implication
from (14) that

Ty~ 7;0£>
for fixed j; an analogue of the corresponding assertion

of ;in §3. If we define T, = 27, T, the expected time
to extinction, then

Ty T~ 1 =0, = 1—=p(c) /A(0), (16)

e

7

so that 1 —6, is a measure of the proportion of time
before extinction which is actually spent at threshold.
Moreover, because 2, ., 7;/ T, decreases to zero with
increasing «k we can just as well interpret 7., as the
expected time needed to escape permanently from any
neighbourhood of d. In other words, the time to
extinction is asymptotic (with increasing ) to the time
at which harvesting becomes commercially un-
profitable.

Suppose that # is the actual total yield (on the x-
scale) before extinction and  the actual time to
extinction, so that these are random variables with
respective expectations F(¢) and T, (conditional on a
start from x = ¢). Then a closer analysis shows that in
fact #/F(c) and J /T, converge to unity in almost
any stochastic sense as k -00. The point is that x recurs
to ¢ a great many times before it ultimately drops to
zero, and the contributions to % or J from each of
these excursions away from ¢ and back are independent
and identically distributed random variables. The
consequence is that the expectation of the average rate
of return before extinction, %/, can be replaced by
the ratio of expectations:

EW|T )~ E¥)/ET ) =F()] T
the relation becoming exact in the limit of large «.
Relation (16) then implies the evaluation
F(0)/ Ty = KB/ T ~ k7 A4 (1=0,)
= K (Ag—pra) = Ale) —ple) = ale)  (17)

for the expected average return over the period before
extinction.

That is, the expected rate of return over the time

before extinction converges to the equilibrium rate of
return for the deterministic process as Kk —>00.

xt

Phil. Trans. R. Soc. Lond. B (1995)

P. Whittle and J. Horwood 183

6. THE UNDERSTANDING OF THRESHOLD
CHOICE

The expression deduced from (9) and (10) for £}, the
expected ‘total return’ before extinction, is essentially
maximal at the value of d which maximizes I1;, and so
for the threshold ¢ near to x,. Expression (17) for the
expected ‘rate of return’ before extinction (when « is
large) is again maximal for ¢ near to x,,. We see then
that the discrepancy is not a consequence of differing
assumptions, because these two evaluations have been
made for the same process; one for which ultimate
extinction is certain. It is a consequence of differing
criteria. To ask for maximal total return and to ask for
maximal average return over the time to extinction (of
stock or, almost equivalently, of commercial viability)
are two very different things. They differ so because
the exponential dependence of T, upon k means that
T... varies extremely rapidly with ¢, whereas the
average return (17) varies only moderately. The
maximization of expected total return then amounts
virtually to the maximization of expected survival
time, with the rate of return playing a role which
actually becomes ever less significant as k increases.
Indeed, the recommendation is virtually that one
should not harvest.

In fact, both criteria are extreme, one taking the
yield rate before extinction and the other the time to
extinction as virtually the sole consideration. A
balanced criterion would be one which chose the
threshold ¢ to maximize yield rate ¥ = a(c) subject to a
prescribed lower bound on expected extinction time
T...- Because this last expression depends exponentially
upon « (which is what induces the sensitivity of its
dependence upon ¢) one might consider rather the
normalized expression
L(c) = limk'log 7,

ext*
K—>00

This has the evaluation

uo=ﬁ@’“<%>

R(xo) (¢ = o)

where R is indeed the function defined in (7).

The two quantities a(¢) and L(¢) vary jointly with
threshold ¢ as indicated in figure 2; a(c) increases with
¢ up to the value x, and declines thereafter; L(c)
increases with ¢ up to the value x, and is constant
thereafter. Thus if one prescribes the value of T as at

ext
least T,,,, then L(c) must be at least & 'log T,;,. For

small enough « one will thus have to take x, as
threshold, but as « increases the recommended thres-
hold will decrease rapidly to the value x,,.
Interestingly, one can reach this same view by
returning to the model of §3: the birth-death model
without extinction. It follows from (14) and (16) that
we can write expression (3) for the yield rate in the

steady state as
Al T
(S/20) + Toe

where the terms neglected are o(1) in k. Here T is
now to be interpreted as the time to first extinction for

(18)

Y= ~a(o) [14(5/A T (19)
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Figure 2. The production function (a(c)), denoted by the
dashed line; and the normalized logarithm of the time to
extinction (L(c)) denoted by the solid line. The logistic
population model and variance used is that of Lande et al.
(1994) neglecting the Allee effect.

this immortal population. Now, A, is the rate at which
a population which has been reduced to zero is
restarted by some external mechanism, so that Ay is
the expected ‘seeding’ time. This seeding does not
amount to an effective restart until numbers have been
brought up to viability; we can regard (S/A,) as the
expected time needed for this to occur, the expected

restart time. Let us then denote it by 7., so that
expression (19) for ¥ becomes
Y& a(e) [1+(Toeo/ Tox) 17 (20)

This is then approximately a(c) or a(c) (Tl./ Ties)
according as to whether the restart time is small or
large relative to the extinction time. Because 7, is
effectively independent of ¢, these two extreme evalu-
ations are equivalent to those obtained for the two
extreme criteria in the case when extinction was
possible. As one varies the value assumed for 7, one
moves monotonically between these two extremes, just
as one did by varying the prescribed value 7, in the
constrained optimization of yield rate.

Note that if u,/A; is slowly varying (and less than
unity) for small positive j then S~ (1—pu,/A;)7%, so
that

Tios & Ay /(A —phy). (21)

The quantity S is then best interpreted as the ratio of
individual birth rate to individual net production rate
at low population densities.

If we consider discounted criteria then the possibility
of extinction is seemingly irrelevant, because any
accounting horizon is orders of magnitude smaller than
a prudent lower bound for the extinction time, the
conservation horizon. As above, then, the constraint of
such a lower bound must be imposed explicitly. That
is, suppose ¢ is the discount rate and that F(c, d) is the
discounted future yield at an operating level (and
threshold) of ¢, calculated on the basis of a deterministic
model. Then one should choose ¢ to maximize F(c, d),
subject again to prescription of a lower bound 7}, on
Teyi As in the undiscounted case above, the effect of
this constraint will weaken rapidly as the scale
parameter k increases, and the model approaches
determinism.
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7. A DIFFUSION MODEL

We shall briefly indicate how the analysis of the last
four sections transfers to two other stochastic versions
of the model: a diffusion version and an environmental
switching version. Some degree of explicit analysis is
justified in that the diffusion model was that considered
by Lande et al. and the switching model brings in a
new feature: environmental rather than demographic
stochasticity. To repeat the analysis at the level of
detail of §§ 3 and 4 would be tiresome, however: readers
who wish for such detail are referred to Whittle (1996).
In fact, there will be a single treatment which covers a
range of very general versions of the stochastic model,
some readers may have recognized the appeal to large
deviation theory which is implicit in our k-scaling
arguments. This we hope to give in a later publication.

Suppose the deterministic harvesting equation (1)
modified to the stochastic differential equation

£ =a(x)—u+te, (22)

where ¢ is white noise of power v(x)/«. We introduce
the factor & so that the model can be made to approach
determinism by allowing « to become larger; a scaling
assumption which is in fact consistent with that for the
birth/death process.

If the unharvested version of the model (i.e. that for
which # = 0) has an equilibrium distribution then this
has probability density

m(x) oC p(x) = v(x) e < R®

where

R(x) = QJ a(y)v(y) " dy. (23)
0

If harvesting is carried out at an infinite rate for x > ¢

then one finds that the average rate of return is

7= a2 [ pto) |

Since R(x) increases with x for x <x, this has the
evaluation

Y~ (o) R (¢) = ale),

for large «; indeed that of the deterministic case, and
maximal at x,,.

If extinction is possible, in that the state value x = 0
is absorbing for the process (22), then analysis similar
to that of §4 shows that F(x), the total expected return
before extinction conditional on an initial value x, has
the evaluation

F(X) — CKR(C)(J e <R dy>, (O <x < c)’
0

in the case of an infinite harvest rate. The value of ¢

maximizing F(c) is essentially the value x, which

maximizes ¢, In fact, the maximizing value exceeds

%y by an amount which tends to zero as k becomes

large.

The apparently conflicting conclusions of §§3 and 4
thus hold also for the diffusion model. The recon-
ciliation of §§5 and 6 also holds, with only the
modification that R(r) now has the evaluation (23).
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8. A MODEL WITH A SWITCHING
ENVIRONMENT

Suppose that the model has several environmental
regimes, labelled by i=1,2,.... In regime ¢ the
population grows deterministically at net rate a,(x),
but transition can take place to regime j with
probability intensity xv,;. This is then a model in which
the stochasticity is of quite a different nature to that of
the last two models. It comes from without rather than
within, i.e. is environmental rather than demographic.
Conclusions could be very different in such a case.
Such models are known as ‘piecewise deterministic’.

The equivalent deterministic model would be given
by equation (1) but with

alx) = Sp,a (), (24)

where p, is the steady-state probability that the system
is in regime 7. The model converges to this deterministic
version if transitions between regimes take place so
rapidly that one is essentially working in an ‘average
regime’. This occurs in the limit of large «, so that «
again appears as the natural scaling parameter.

A fixed threshold would certainly not be optimal for
such a multi-regime model. It is likely that the optimal
policy would be of a threshold nature, but with a
different threshold in each regime. In practice, one
could not even be sure of what regime one was in, and
would have to infer it from imperfect observations. The
optimal policy would then necessarily be even more
complicated. However, we shall consider only the
crude fixed-threshold policy, and shall see how the
optimal threshold value compares with that for the
equivalent deterministic model.

We shall consider a two-regime case, which is
amenable to analysis. A value of x at which a(x)
and a,(x) have the same sign cannot have positive
probability in equilibrium. Let us suppose then that
a,(x) = A(x) = 0 and a,(x) = —p(x) < 0 over an inter-
val 0 < x < M which includes all x-values of interest.
We shall set vy, = v; and vy = v,.

Suppose initially that extinction is impossible, so
that the aim is to maximize the expected rate of return
Y in the steady state. We shall suppose that the
maximal harvest rate % is infinite. For the deterministic
equivalent of the process we have, by (24),

a(x) = [y A(x) =y, u(x)]/ (1 +0y). (25)

We shall suppose that this has the character indicated
in figure 1. We also suppose that u(x) = 0 for x < 0, so
that x is indeed confined to x > 0.

The question of extinction or non-extinction is more
subtle for this model. Suppose, for example, that A(0)
= 0 (so that a zero population cannot be replenished)
and that g(x) is bounded away from zero for positive x.
Then extinction would be certain, because there is a
non-zero probability that the unfavourable regime 2
can be held long enough that the population is run
down to zero. For extinction to be impossible in an
isolated population one requires that x(x) should tend
to zero sufficiently fast as x decreases to zero.
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An analysis of the non-extinguishable case shows
that the average rate of return under the ¢-threshold
policy is

Y= /\(c)/[l + kv, j: exp [kR(x) —KR(C)]g(x)dx], (26)

where g(x) = A(x) "+ u(x) ™" and

R(x) = J: [vap(y) ™ —vi A(y) ] dy. (27)

In the limit of large « expression (26) indeed reduces to
Y = a(c), with a(x) specified by (25).

In the case when extinction is possible one finds that
the expected return before extinction is, for any initial
state x, proportional to A(¢)e*®, with R given by (27),
and it is this quantity which should be maximized with
respect to ¢. For « large this amounts to the
maximization of R(¢), i.e. to the equation a(c) =0,
with a(x) having the determination (25). That is, the
optimal threshold again approaches the value x,.

The reconciling analysis of §§5 and 6 again goes
through, with R(x) now having the evaluation (27).

9. DISCUSSION

The models presented above are unrealistically
simple. Nevertheless, they possess much of the struc-
tural form to be found in more realistic and complex
models, and their use for optimization purposes has
revealed and clarified many of the important features
of more complex models (see for example Clark 1976).
Furthermore, they reveal the essential effects of
stochasticity and scale-dependence which will be seen
in more complex models.

For discrete- and continuous-time models, which
incorporate demographic stochasticity and for which
extinction is not possible through stochastic events, the
threshold (and so population level) which maximizes
yield rate is close to the point x, of maximal net
productivity (the maximum sustainable yield level,
msyL) as for the equivalent deterministic models (see
§§2, 3 and 7).

For these same models, modified so that extinction is
possible (and indeed inevitable), the threshold which
maximizes expected total future yield is x,, the point of
zero net productivity (see §§4 and 7). These results are
consistent with those of Lande et al. (1994) and indicate
a generally valid conclusion.

The models incorporated a ‘demographic’ varia-
bility which is readily identifiable as such in the
birth/death model, but which can be interpreted in
different ways for the diffusion model. For example,
Lande et al. (1994) assumed a noise variance with
components of orders x and x” in population size x;
these can be construed as corresponding to
‘demographic’ and ‘environmental’ variability re-
spectively. The character of the variability significantly
affects expected times to extinction (Pimm ef al. 1988).

The switching model of §8 expresses environmental
variability in the very explicit form that the ‘environ-
mental regime’ (and so the nature of the population
dynamics) can switch randomly. If we assume a fixed-
threshold policy then the threshold which maximizes
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yield rate is again near the MsyL x, if extinction is
impossible. If extinction is possible then the threshold
which maximizes expected total future yield is near,
but strictly above, the unexploited equilibrium level x,.
In this case the partially optimized policy exploits the
fact that the population will spend periods above x,.

In §§5 and 6 we resolved the conflict between the two
recommendations in a way which is mutually consistent
for the two rather different cases: when extinction is
possible and when it is not. The analysis required an
explicit recognition of the timescale of events, and also
of the physical scale of the system itself, which affects
the relative scale of stochastic effects. This was to have
been anticipated, for, if extinction were to occur over
geological timescales, would one not expect to harvest
a population robustly? If the model is near-
deterministic then, as pointed out by Lande et al.
(1995), the final run to extinction (from threshold, say)
is quick, and the time to extinction is proportionately
little more than the time for which the population is
near enough to threshold to be commercially viable.
This point, discussed briefly and heuristically in §5, is
actually the reason why the average yield over the time
up to extinction converges to the yield-rate for the
deterministic limit model in the limit of large physical
scale. In this discussion of timescales it should be
emphasized that the introduction of discounting
supplies no reconciliation; indeed, it impels one to
short-term policies. One must take explicit account of
conservation horizons, which are greatly more distant
than accounting horizons.

We see from the discussion of §§4 and 5 that the
recommendation of the two different thresholds, x,, or
%y, 18 (in the case when extinction is possible) not a
consequence of a difference in models, but of difference
in criteria. The total yield before extinction is a
product of the average yield-rate and the time to
extinction. The average yield rate is a fairly stable
quantity, in that it converges to the steady-state value
as the process becomes near-deterministic, and varies
with threshold in much the same way. However, the
time to extinction increases very rapidly as the process
approaches determinism. For this reason it shows such
a sensitive dependence upon threshold that a choice of
threshold to maximize expected yield before extinction
effectively maximizes extinction time at the expense of
average yield.

An additional insight into this process is given by
Reed (1988), who considered the harvest from a
population subject to the chance event of collapse from
hazards other than harvesting. The extra risk acts in
the same way as an increased discount rate, and if the
hazard is independent of population density, impels
one to harvest harder before Nature strikes. However,
if the hazard rate decreases with increasing population
size then there is a countervailing effect, inducing one
to harvest the population at a higher threshold and so
a lower rate.

The objectives of maximizing yield-rate or total
yield individually are both extreme. It is natural to
consider the balanced policy which optimizes yield rate
subject to a lower bound on extinction time which is
acceptable on conservation grounds. This is a view
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propounded by Wissel & Schmitt (1987), and made
workable by the a(c)/L(c) evaluations of §6. As
variability decreases the optimal threshold under this
constraint decreases quite rapidly from the unexploited
equilibrium level ¥, to the MsyL x,.

A similar conclusion holds for models for which
extinction is impossible, and so the population is
immortal. The yield rate achieved at a given threshold
¢ can be expressed as Y = a(¢)/[1 + (1}es/ Toxs) ], where
a(c) 1s the yield rate for the deterministic model at that
threshold, T, is the time to the first extinction (which
will not be permanent) and 7, is the restart time; the
time needed for an extinguished population to be re-
seeded and to grow to demographic viability. In
maximizing Y with respect to ¢ one effectively
maximizes a(¢) or 1., according as the ratio 7,/ 7,
is large or small. As physical scale increases then 7,
increases very rapidly, and so the optimal threshold
falls from x, to x,. An estimate of 7. is given in
formula (21) under assumptions stated there. If these
fail to hold (e.g. if there is an Allee effect) then the
expression 7}, = §/A, must be approximated in some
other way.

Some populations are unique: their extinction is
then final. However, most populations are subject to
restarts or the so-called ‘rescue effect’. Migration
amongst exploited populations of fish, whales and seals
is well documented, and captive breeding and release
provide another mechanism for restarts. However, the
practical determination of models for populations
subject to extinctions which may or may not be final
demands much of our knowledge. Models of the type
we have considered are unlikely to represent the
behaviour of populations adequately at low levels.
Further, inaccurate modelling of the demographic and
environmental stochasticity can be qualitatively mis-
leading (May et al. 1978; Shepherd & Horwood 1980).
As an example of the quantitative sensitivity of
extinction times, if the Allee effect is removed from the
population response assumed by Lande ¢t al. (1994)
then the extinction time is increased by a factor of four,
but if the variability is halved then the extinction time
is increased by a factor of order 10°.

Irrespective of model construction, progress has been
made in the measurement of quantities such as
extinction times, colonization rates and immigration
rates (MacArthur & Wilson 1967; Pimm ef al. 1988;
Smith et al. 1993) which are useful in the development
of conservation plans. However, caution in interpret-
ation is necessary, as one is observing the dynamic
process between the conflicting factors of extinction
and recolonization (MacArthur & Wilson 1967 ; Tracy
& George 1992) and observations are usually highly
selective and over only limited times. It is to be hoped
that we do not obtain data on the extinction rates of
our great populations of fish and marine mammals,
and that such parameters will have to be inferred from
other sources of information.

The concept of population extinction has not played
an obviously prominent and explicit role in advice on
resource management. To some degree this is because
extinction time is highly dependent upon the absolute
size of populations and many exploited populations are

€s
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large. However, even large populations will become
small. Approaches developed under the Rio Con-
vention on Biological Diversity and the Rio Dec-
laration on Sustainable Development (Anon. 19944, b)
may bring the issue of extinction into the foreground.
Over longer time periods the management objectives
considered in this study are naive, for populations
subject to extinction. More sophisticated objectives
would be required, taking account for example of
uncertain future utility of a resource (Reed 1993).

In the meantime, guidance can be given for optimal
resource management. If a population has a ‘small’
expected time to extinction then explicit consideration
must be given to the effects of exploitation on the time
to extinction in comparison with the benefits from
exploitation. ‘Small’ is obviously a subjective concept
in the absence of a detailed understanding, and benefits
can be large even from slowly reproducing populations
if a surplus is harvested to release capital for alternative
investments. However, benefits would have to increase
very rapidly with harvest rate to overturn the
conclusion that maximal total return would be
achieved by a low rate of exploitation. If one specified
a minimal acceptable time to extinction which was of
the same order as the expected time to extinction in the
absence of harvesting then one would reach the same
conclusion. If the extinction time is of conservation
significance than it follows that benefits should not be
calculated using economic discount rates, as this feature
would quickly dominate results and effectively remove
any concern for extinction. If however the natural
extinction times, or times to ‘first extinction’, are
‘large’; as they are likely to be for many populations of
fish, whales and seals, then a harvest rate close to MEY
would be appropriate, and the classical advice on
resource management holds.

Finally, in this study we have neglected age-
structure, costs and discounting. The appeal to the
concept of physical scale (essentially, an application of
large-deviation methods) will hold also for the vector
case, and it is anticipated that our conclusions will
generalize to age-structured population models. If
there are costs associated with harvesting then the
concept of a ‘ threshold’ becomes more diffuse, but one
suspects that the general recommendation of an
operating point which drops from the point of zero
profit to MEY as the model approaches determinism will
hold. As we have already indicated, discounting has
the effect of making the contingency of extinction seem
so remote as to be irrelevant. Its relevance can be
restored only by, again, making the optimization of
threshold subject to the conservation constraint of a
lower bound on the expected time to extinction.

We are indebted to Dr Steinar Engen for allowing us to see
a copy of the unpublished article by himself and co-authors
(Lande et al. 1995).
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